1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
| # Finished Date: 2024/03/29 10:00 - 2024/03/30 00:14 # Author: Olives # Position: in SCUT # Environment: pytorch, python3.9 # Do the thing better
import random import numpy as np import sklearn.datasets as sd import matplotlib.pyplot as plt import plotly.graph_objects as go
# Activation function to strengthen the non-linear ability, use sigmoid function def sigmoid(x: object) -> object: temp = 1 / (1 + np.exp(-x)) return temp
# Define a class and encapsulate all the entire functions, which makes it easier to modify class LogicalRegressionAndSVM: def __init__(self, path_train, path_test, learning_rate=0.002, episodes=100, loss_mode=0, omega_init_mode=0, mini_batch=40, regularization=0.5, optimize_mode='SGD'): self.learning_rate = learning_rate self.episodes = episodes self.loss_mode = loss_mode self.path_train = path_train self.path_test = path_test self.X_train = np.empty((1, 1)) self.X_test = np.empty((1, 1)) self.y_train = np.empty((1, 1)) self.y_test = np.empty((1, 1)) self.omega = np.empty((1, 1)) self.train_loss = [] self.test_loss = [] self.omega_init_mode = omega_init_mode self.opt_omega = np.empty((1, 1)) self.mini_batch = mini_batch self.regularization = regularization self.b = np.empty((1, 1)) self.optimize_mode = optimize_mode
# read data from file don't need other operate for data def read(self): X_train, y_train = sd.load_svmlight_file(self.path_train, n_features=123) X_valid, y_valid = sd.load_svmlight_file(self.path_test, n_features=123)
# transform to ndarray X_train = X_train.toarray() X_valid = X_valid.toarray() # transform to column vector y_train = y_train.reshape(len(y_train), 1) y_valid = y_valid.reshape(len(y_valid), 1)
# add one column values is 1, in my point, this is the bias part, course I the train part of bias, so delete
# X_train = np.concatenate((np.ones((X_train.shape[0], 1)), X_train), axis=1) # X_valid = np.concatenate((np.ones((X_valid.shape[0], 1)), X_valid), axis=1) X_train = np.nan_to_num(X_train) X_valid = np.nan_to_num(X_valid) self.X_train = X_train self.X_test = X_valid self.y_train = y_train self.y_test = y_valid
# get the classification result score def score(self): hx = sigmoid(self.X_test.dot(self.opt_omega)) hx[hx >= 0.5] = 1 hx[hx < 0.5] = -1 hx = (hx == self.y_test) return np.mean(hx)
# calculate the gradient of logistic regression def logistic_gradient(self, X, y): sigmoid_x = sigmoid(X.dot(self.omega)) loss = X.T.dot(sigmoid_x - y) return loss
# calculate the loss of logistic regression def logistic_loss(self, X, y): sigmoid_x = sigmoid(X.dot(self.omega)) cost = np.multiply((1 + y), np.log(1 + sigmoid_x)) + np.multiply((1 - y), np.log(1 - sigmoid_x)) return -cost.mean() / 2
# calculate the loss of hinge def hinge_loss(self, X, y): loss = np.maximum(0, 1 - np.multiply(y, (X.dot(self.omega)) + self.b.T)).mean() reg = np.multiply(self.omega, self.omega).sum() / 2 temp = self.regularization * loss + reg return temp
# calculate the gradient of hinge(includes omega and b) def hinge_gradient(self, X, y): error = np.maximum(0, 1 - np.multiply(y, X.dot(self.omega))) index = np.where(error == 0) x = X.copy() x[index, :] = 0 gw = -y.T.dot(x) gb = -y grad_omega = self.omega + self.regularization * gw.mean() grad_b = self.regularization * gb.mean() return grad_omega, grad_b
# train and test the model def train(self): # depends on the omega init mode to choose different init mode, like random or zeros if self.omega_init_mode: self.omega = np.random.random((self.X_train.shape[1], 1)) else: self.omega = np.zeros((self.X_train.shape[1], 1))
# the init b can change its way of init, but don't have much meaning self.b = np.random.random((self.X_train.shape[1], 1)) train_data = np.concatenate((self.y_train, self.X_train), axis=1)
# different loss mode decides logical regression or support vector machine and different optimize mode if self.optimize_mode == "SGD": if self.loss_mode: for episode in range(self.episodes): train_sample = np.matrix(random.sample(train_data.tolist(), self.mini_batch)) grad = self.logistic_gradient(train_sample[:, 1:125], train_sample[:, 0]) self.omega = self.omega - (self.learning_rate * grad) self.train_loss.append(self.logistic_loss(self.X_train, self.y_train)) self.test_loss.append(self.logistic_loss(self.X_test, self.y_test)) self.opt_omega = self.omega else: for episode in range(self.episodes): train_sample = np.matrix(random.sample(train_data.tolist(), self.mini_batch)) grad_omega, grad_b = self.hinge_gradient(train_sample[:, 1:125], train_sample[:, 0]) self.omega = self.omega - (self.learning_rate * grad_omega) self.b = self.b - (self.learning_rate * grad_b) self.train_loss.append(self.hinge_loss(self.X_train, self.y_train)) self.test_loss.append(self.hinge_loss(self.X_test, self.y_test)) self.opt_omega = self.omega else: pass
# plotly draw the loss of each episode def plotly_graph(self): episodes_list = list(range(self.episodes)) fig = go.Figure() fig.add_trace(go.Scatter(x=episodes_list, y=self.train_loss, name="train_loss", line=dict(color='firebrick', width=4))) fig.add_trace(go.Scatter(x=episodes_list, y=self.test_loss, name="test_loss", line=dict(color='royalblue', width=4)))
fig.update_layout(title='The train and test data loss in different episodes', xaxis_title='Episodes', yaxis_title='Loss')
fig.show()
# plot draw the loss of each episode def plot_graph(self): iteration = np.arange(0, self.episodes, step=1) fig, ax = plt.subplots(figsize=(12, 8)) ax.set_title('Train') ax.set_xlabel('iteration') ax.set_ylabel('loss') plt.plot(iteration, self.train_loss, 'b', label='Train') plt.plot(iteration, self.test_loss, 'r', label='Test') plt.legend() plt.show()
# the run function def run(self): self.read() self.train() # self.plotly_graph() self.plot_graph()
if __name__ == '__main__': # logical regression to get the result logical = LogicalRegressionAndSVM(path_train='./a9a.txt', path_test='./a9a.t.txt', learning_rate=0.001, episodes=200, loss_mode=1, omega_init_mode=1, mini_batch=70) logical.run() print("Logical Regression Over!\n") print(logical.score())
# svm to get the result svm = LogicalRegressionAndSVM(path_train='./a9a.txt', path_test='./a9a.t.txt', learning_rate=0.003, episodes=200, loss_mode=0, omega_init_mode=1, mini_batch=70) svm.run() print("SVM Over!") print(svm.score())
# To use Adam to optimise # svm = LogicalRegressionAndSVM(path_train='./a9a.txt', path_test='./a9a.t.txt', learning_rate=0.003, episodes=100, # loss_mode=0, omega_init_mode=1, mini_batch=70, optimize_mode="Adam")
|